WRITE ALL YOUR WORK IN THE ANSWER BOOK PROVIDED. EVERY ANSWER SHOULD INCLUDE ALL WORKINGS, NECESSARY DIAGRAMS AND FORMIT AF

S

Į	
7110000	=
2	
Ç	′
(ŀ
f Th	1
ረ	
F	2
4	d
ţ	1
ع	
ç	
9	֝֝֝֝֝֝֝֝֓֓֓֝֝֓֜֝֟֝֓֓֓֩֡֝֟֝֓֓֓֓֡֩
ĕ	Š
erroneanh	5
Ě	j
Ç	7
•	

ΉÜ	DIAGRAMS AND FURMULAE.	
ST/	START EACH ANSWER ON A FRESH PAGE.	
Cho	Choose any FIVE questions.	
	A 3m x 1m kitchen working top for food preparation is to have lighting design fixed 60cm above that would satisfy minimum 538 lux.	ixed 60cm
۲.	Describe and define Utilisation Factor (UF) in lighting design.	(3 marks)
Ħ	Name two factors affecting the utilisation factor.	(2 marks)
Ë	Describe Maintenance Factor (MF) in lighting design.	(5 marks)
N.	Describe and define the space height ratio.	(2 marks)
Usin MF	Using the Lumen Method and considering 5050 LED light with average 19 lumens, UF of 0.6 MF 0.7. Calculate:	IF of 0.6 and
۲.	how many LEDs are required.	(3 marks)
\7	the minimum spacing between each LED, including:	
	(a) numbers in rows,(b) LEDs per row,(c) axial spacing and(d) transverse spacing.	(5 marks)
2. (a)) Name two methods for charging secondary batteries. For each method briefly explain how the batteries are charged. (8 marks)	y explain how (8 marks)
(b)	parallel rows. The whole cells arrangement forms a battery which is supplying a load of resistance 8 Ohms. Calculate,	anged in three ying a load of
	i. The load current,	(4 marks)
	ii. The battery terminal voltage	(4 marks)

4

	(c)	3. (a) (b)
 i. The total resistance ii. The total current iii. The voltage drop across the 3.5 Ohms resistor iv. The current though the 8 Ohms resistor v. The total power vi. The power dissipated by the 4 Ohms resistor vii. The power dissipated by the 3.5 Ohms resistor 	Draw the circuit showing the resistors combination. Calculate:	 3. (a) State Ohm's Law as applied to a direct current (DC) circuit (3 marks) (b) A circuit consisting of three resistors of resistances 8 Ohms, 7 Ohms and 4 Ohms connected in parallel, in series with a fourth resistor of resistance 3.5 Ohms across a 20 Volts direct current (DC) supply.
(2 marks)	(3 marks)	(3 marks) and 4 Ohms s across a 20

Taking that: Сиптепт Supply voltage A test on an electric kettle gave the following results: Determine the efficiency of the kettle. Final temperature Time taken Initial temperature Volume of water mass of 1m³ of water temperature coefficient of water 1 kWh 6.2 Amps 18°C 100°C 330 seconds 0.001 m³
235 Volts = 1000 kg = 1000 litres = 4187 Joules = 3.6 x 10⁶ Joules

i Draw the circuit diagram	Volts supply at a frequency of 50 Hz. A	A resistor of 200 Onms and a capacitor (
	Volts supply at a frequency of 50 Hz. A current of 0.85 Amperes flows in the circuit.	A resistor of 200 Onms and a capacitor of unknown value are connected in series to a 240

(20 marks)

ii. Find the impedance of the circuit.	i. Draw the circuit diagram. (4
(6 marks)	(4 marks)

ы

iii. The load power supplied by the battery.

(4 marks)

(4 marks)

w

A 95% efficient 50 litre water electric boiler is to raise the temperature of water by 40°C in 30 minutes. Calculate: 9

The heat energy required by the water ... iii iii ...

The electrical energy input to the heater The average electric power supplied, and The cost of energy at 60.11/kWh.

(5 marks) (5 marks) (5 marks)

(5 marks)

Neglecting the heat absorbed by the surroundings.

Specific heat capacity of water is 4.186 J/g/°C.

END OF PAPER

EXAMINATION: AUTHORISATION A

Paper I (Theory)

Time Allowed - 3Hrs

February 2018